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INTRODUCTION 

It has become clearer  and clearer  in recent years,  as can be seen 

from such work a s  [1,2], that problems in the calculus of variations, 

optimal control and nonlinear programming can be treated in  a completely .. 
unified manner, at 

It has a lso become 

recast  as standard 

least  as far as optimality conditions a r e  concerned. 

clear that discrete optimal control problems can be 

nonlinear programming forms which' a r e  solvable by 

standard algorithms. 

The purpose of this paper is to show that the seeming ease with 

which nonlinear programming algorithms can be applied to discrete 

optimal control problems is deceptive, and that severe ill conditioning 

may occur due to the exponential nature of solutions of a difference 

equation. However, this paper a lso shows that it is, nevertheless, possible 

to make effective use of nonlinear programming results,  such as the 

convergence theory discussed in [ 31, for the construction of very 

efficient, large step, optimal control algojithms. Incidentally, it should 

be pointed out that the algorithm presented in this paper is not the only 

one which combines both optimal control and nonlinear programming ideas. 

For a comparison, see the algorithm by Bar r  and Gilbert [ 41, which 

also uses  a geometric transcription but has entirely different rules for 

selecting the next point. 

In conclusion, the author wishes to express the hope that the 

tentative steps presented in this paper for merging optimal control and 
' 



nonlinear programming ideas will contribute to a new generation of very 

efficient optimal control algorithms. 

I. A CLASSICAL APPROACH 

Statement of the Minimum Engergy Problem: 

systemdescribed by the difference equation 

6 .  We a r e  given a dynamical 

x = AX. t buitl, i = 0,1, , N-1 i tl 1 

n 
where x . E  R 

u E R is the system input at t i m e  i, i = 0,1, 

n X n matrix, and b E  R . 

is the state of the system at t ime i, i = 0,1, 2, . . . , N, 

.. , N-1, and A is a 

1 
1 

i tl 
n t  

A A *  n 

We a r e  required to find a control sequence u = (ul, u2,. . . , uN) 

which minimizes the cost 

N 

i =1 

subject to the constraints that [u.  I 5 1, for i = 1, 2, * .  . , N, and that the 
i 

1 

determined by (1) must satisfy * corresponding trajectory 2 X1’ , %q ,* 

n n * 
x = c (a given vector in R ) and f N 52, (a given se t  in R ). 0 0  

Case 1: The se t  52 consists of the point c N E R n  only, i .e.  a = {C N }. 

This case of the minimum energy problem can be solved by 

standard quadratic 

Wolfe [ 51. 

quadratic Programming problem, we proceed as follows, 

programming algorithms, such as ,  say, that of 

To t ranscr ibe the minimum energy problem into a standard 

. -2-  



Solving (1) for  x we obtain (with xo = co) 
N' 

N -1 

( 3) 

(4) 

AN-i-l bu . x N = A N c o t ' z  i tl 
i = O  

N-' 
Le t . r  = A % for  i = 1, 2, .  . . , N and le t  d = ANco,' then (3)  i 

becomes 

N 

x = d t 1 r . u .  1 1  . N 
i =1 

Letting R be a n X N matr ix  whose i-th column is r .  1 and setting 

c = c - d, the minimum energy problem becomes N 
N < 

minimize i. 1 u: subject to Ru = cy  - 1 5 u. 5 t 1 for  i = 1,. . . , N ,  
1 

i =1 
- 

which is a standard bounded variable, quadratic programming problem 

with a unique solution. To apply the Wolfe - method [ 51, o r  any other 
3 

method which utilizes the Simplex algorithm [ 51, we perform one more 

transformation. 

Then ( 5 )  becomes, 

Thus, for  i = 1, 2 , .  . . , N, le t  2w. = u. t 1, 2 v .  = - u  4- 1. 
1 1  1 i 

J 

N 
2 

(wi-vi) subject to R(w-v) = c y  wi t v. = 1 and 1 

i =1 

w. L 0, v. 2 0, for  i = 1 , 2 , .  . . , N. 
1 1 

Applying the Kuhn-Tucker necessary and sufficient conditions [ 6 ] 
- *  

to  (6 ) ,  we find that G. = w.-v. for i = 1, 2, . . . , N, is optimal i f  and only if 

for  some vectors 

1 1 1  

n N i n R  and vectors 5 ,  5 i n R  ,. 1 2  

-3- 



( 7 )  

*. 

(or, for that matter,  many related algorithms,' such as Lemke's [7]) 

algorithm [ 5 ] solves (7) by a modification of the Simplex algorithm [ 5 1, 

and which in  turn requires the inversion of (3Ntn) X (3Nfn) submatrices 

of the matrix in (7). Since the top row of RT (and the first columns of R)  

will be very close to  zerowhenN is large, it is clear that such submatrices 

will often be very difficult to invert, resulting in severe ill conditioning. 

The severity of this ill conditioning, of course, depends on N, since for 

N large,  most  of the rows of R 

computer. 

1 

T will appear t o  be zero to a digital 

P 

Thus, standard quadratic prog ramming algorithms become ill- 

conditioned when used for  solving certain optimal control problems. 

Case 2: 

L? = (x I 11x1 I = 1 ). Because !2 is a ball, we can solve this case by 

modifying a gradient method due to  J. Plant [S ] which he used for 

The se t  0 is a unit ball with center at the origin, i. e. 

< 

continuous time problems. Thus, applying necessary conditions of 

t 

optimality (which in  this case a r e  a lso sufficient) (see [l 3 )  directly to 

- 4- 



the minimum energy problem, we find that the control sequence 

u u . . . , u (with corresponding trajectory c 
A A . . . , j; ) is optimal 1’ 2’ N 0’ xl, N 

n 
in  R such if and only if there  exist co-state vectors p , p , p , . . . , p 

0 1 2  N 

that 

f o r i  = O , l ,  ..., N T - Pi - A Pi+l 

and, for i = 1, Z , ,  ..,N, 

A - ui t ( p i , b )  = 0 if  IGil < 1  I 
4 - ui t ( p i ,b )  2 0 if  i 

-G. 1 t (  p i , b )  S O i f c  i 

For  A nonsingular (which will 

continuous system), we have that p. = 
1 

be the case if (1) is a sampled-data 

(AN-i-l ) pN, and f rom (10) 

A 

u. = sat( ( p b > )  (where sat(x) = x for 1x1 5 1, and sat(x) = sgn x for  
1 i’ - A 

= v and making use of ( 9 ) ,  we therefore obtain 1x1 > 1). Setting 2 N 

A 

u = sat ( P v , ~ . )  for i = 1, 2, ..., N, (1 1) i 1 

N-’ where r = A  b, as before. 

Note; It is rather easy to  show that l [ G N l l  = 1 (i. e. that it i s  on the 

boundary of the ball), that 

i 

(12) 
N must satisfy ( A co ) L 0, and that 

N N’ 
- . e  6 . . , u and, consequently, also the 
1’ u2’ N’ 

the optimal control sequence u 



I -  

-- 
(13) 

corresponding optimal trajectory , L. * 

x 2 ” ’ - ’ x  N’ a r e  unique. 

To apply the gradient method,. we first express the initial state 

x in t e rms  of a terminal state v E S ,  where S = ( v € E n l  1 1 ~ 1 1  = l}, by 
0 

means of (11) and ( 3 ) ,  (4). 

N 

Thus, 

A sat ( p v , r i )  = f(p,v) 

i =1 

If p < 0 and v E  S a r e  chosen properly, then x 

desired solution. 

f o r ( p , v ) i n t h e s e t ( p , v ) I  ( v j A  

for at leas t  one if (1,2, . . . , N} 

p, 

= c 
0 0’ 

and (11) gives the 

Now, the funtion f (pJ  v) can be shown to be one-to-one 

-N 
c o ) Z O ,  llvll = l a n d  I ( P v , r i ) (  51, 

4 { 
Hence it can be inverted to find the 

A *  
* 

such that c = f (p ,  v) and hence, by (11) the optimal control sequence. 
0 

Now, since v is a point on a unit sphere, v = h(8), where e is 

its (n-1) spherical  co-ordinates. 

s e t  such that iE I(p, v) i f  and only if (1 ( pv,  ri ) I 5 1 } *  Suppose now we 

have guessed a p < 0 and a v satisfying 11v[1 = 1, ( v, A 

I(p, v) is not empty. Let x = f (p ,  v). Then 

Let I(@, v ) c  (1, 2, . . . , N} be an index 

-N 
c o > 2  0, and 

0 

-N ’x = f (p ,  v) = AmNV - 1 A ri ) .s?n ( pv, r i )  
0 (14) 

iE I(PY v) 

where? is the compliment of I, and we have started using the Dirac 

bracket notation: ) indicating a column vector and ( a row vector, Now, 



- 
for small perturbations in p and v, I (p, v) will not change, and hence, to first 

order te rms ,  (14) expands as follows: 

f (p  t A p ,  v t Av)  - f(p,  V) = (x0 t AX,) - x 0 

ah (e )  A e ,  Now, since v = h(8)  and h is obviously differentiable, Av = - a e  

to first order  te rms .  Hence 

Since, f(p,  v) is 1 - 1, the matrix in (16) will be nonsingular almost always. 

Hence, i f  we choose A x  = X (co -x ) with X > 0 sufficiently small  for (16) 
0 

t o  remain valid, we can compute ( A  8 ,  A p) by inverting the matr ix  in (16) 

and move f rom x to  x t A x  (near enough) which is closer to c 0 than 
0 0 0 

x was. 0 
Y 

Again, by inspection of (16) and the way I(p, v) was defined, we see  

since 

Incidentally, 

that matrix inversion will incapacitate this method when N is large,  

the matr ix  in  (16) will have an  extremely small determinant. 

apar t  f rom this bad ill-conditioning the above approach also suffers f rom 

the fact that it cannot be demonstrated to converge. 
\ 

, -7 -  



Thus, once again we find that the straightforward, textbook type 

approach to a simple problem like our minimum energy problem, may 

not get one very far on the way to  finding a solution. 

! 11. A PARAMETRIC APPROACH 

W e  shall now describe a new algorithm which suffers f rom none 

of the defects we have encountered in the previous section. The price one 

pays for this in Case 1 is that (5) can no longer be solved in a finite 

number of steps (there seems to be no finite algorithm for Case 2, so 

we only have gains here). The trick, of course, is to avoid matrix 

inversions by means of parametrization. 

Assumption: We shall assume that S-2 ={XI Ilx-c 115 p}, i. e. that it is 

- a closed ball with center c and radius p. We do not exclude the possibility 

that p = 0, i o e . ,  that S2 is just a point. 

We must first recast  the minimum energy problem in geometric 

terms. Thus, the constraint ‘Iu. I 5 1, for i = 1, 2,.  . . , N, defines a hypercube 
1 

N K in R 

(fi is the distance from a vertex of K to  the origin of R ), l e t  Z (cr)CR 

be a closed ball of radius Q with center at the origin, i. e. C (a) = 

(u I l lu{ I 5 a}. 
finding the smallest  cr in [ O,fi],say & for which 

(i, e. K = {UI  [u. I 5 1 for i = 1,2,. . . ,N]). NOW, for cr [ 0 , f i l  1 
N N --, 

A 

Then it is easily seen  that our problem is equivalent to 

where + is 
N the empty se t  and r: R - Rn is defined by (4), i.e. 

\ 
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and th 

i =l 
* 

r r e s p  nding u which has the property tha 

Since the optimal control sequence 

o r  a closed unit ball, (19) must be true, i. e. the intersection 

is unique when Sa is either a point 

A -  A * 
r (Z  (a)) n r ( K )  nSa must consist of the unique terminal state x 

Since the sets  52 and r (Z(G)) n r ( K )  a r e  both convex, there is a plane P 

passing through the point 

= r(u). N 
A 

= r ( G )  which separates Sa f rom the se t  

r(Z(cr))n r (K) .  

point r(G) i s  also the only point of tangency for P and r ( Z ( a ) ) n  r ( K ) .  

Otherwise the plane P will have many points in common with r (Z(a ) )n  r (K) .  

If Sa has points which a r e  in the interior of r ( K )  then the 
* 

A 

The gist of the algorithm we a r e  about to describe is as follows: 

(i) Insert a hyperplane P between the point r (Z(0))n r ( K )  = { r ( O ) )  = (d} 

and the set  Sa , with P being a tangent plane to  Sa at a point v; (ii) Increase 

Q until r (Z(a))  n r ( K )  touches P at a point wi; (iii) If v = w then we a r e  done, 
7 

since we must have found the smallest  Q satisfying (19). 

can rotate the hyperplane P in such a way that it stays in contact with Sa 

If v # w , then we 

but breaks away f rom r (Z(a) )  n r (K) .  

again if v = w. 

W e  can then increase a and check 

Thus, we should stop if either v = w, in which case if  v is the 

N' N 

It will readily be seen that our algorithm 

* 
optimal terminal state x 

by independent means. 

or  else, if we have established that v = 

. -9- 
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handles the case 52 n r ( K )  = {a } automatically so that we only need 
N 

to check the optimality of the initial guess by independent means and 

then proceed as if v = w is the case for the optimal solution. 

Obviously, the rotation of the plane P cannot be done in any old 

way if one wishes to insure convergence. Hence we shall need the 

following machinery to  make it wbrk, 

Definition: 

.. 

n Let P (v, s) denote the hyperplane in R which passes through 

' n  the point v E  R , with unit normal s ,  i. e. 

P ( v , s ) =  { x l ( x - v , s )  = o }  
' 

n Definition: Let S = {s I I IS 1 1  = 1) be a unit sphere in R and le t  v: S * a S2 

(the boundary of 52 ) be the contact function defined by the relation 

( x - v(s), s ) 5 o for all XG 5 2 ,  i. e., 

since i2 = {x 1 I Ix - c 1 1  I p} is a closed ball of radius p and center c, 

V(S) = c t ps. Thus, if p = 0, v(s )  = c for all s.  
- 

Definition: 

by a hyperplane f rom the point d = r ( O ) ,  i. e. ,  for each V - E V  there  is a 

sc S ,  such that v(s) = v 

Let V c  aS2 be the se t  of all pGints in as2 which can be separated 
rt, 

.I. *r 
and 

( d - v(s), s ) 2 0. 

(Note, V = {c) when 52 = {C)). 

Furthermore,  le t  T be the se t  of all points s in S such that v(s) E V. 

(Note, T is a closed set). 

-10- 



(23) Definition: F o r  ic [ 0, f i ] ,  le t   CY) denote the se t  

and le t  c: T + [ 0, m] be a surrogate cost  function defined by - 

’ 
C(S) = min{cr I P ( v ( s ) ,  s) n  CY) # + 1, 

(Y€[~,W 

i.e. c(s)  is the smallest  CY for which the intersection of e(@) with 

P(v(s ) ,  s), the tangent hyperplane to R at v(s) with normal s, is not empty. 

Observing now, that P(v(s ) ,  s )  n e ( c ( s ) )  is the se t  of terminal states for 

the minimum energy problem with R se t  equal to P(v(s),  s), and that the 

C I  

solution to this new problem is also unique, we conclude that 

i.e. that it must consist of one point only. 

n (25) Definition: We define the map w: T -+ R by (24). 

Now, it is not difficult to see that small  changes in  s produce 

correspondingly small changes in  v(s) ,  w(s) and c(s) ,  i. e. that all these 

functions a r e  continuous. 

(26) Definition: For  any s T, le t  o- (s) be the arc in  T defined by 

Again we see that small variations in s cause only small variations in 

o-(s), (i. e. that it is a continuous map f rom T into the set of all subsets 



of T with respect to the Hausdorff metric).. 

W e  now have all the par ts  we need to  define our algorithm. 

(27) Definition: Let a: T + T be the algorithm defined by 

c(a(s)) = max c(sl), 
s '  E a(s) 

i. e.  it is the point s 1  on u(s )  which maximizes c(s').  Simple geometric 

considerations lead one to believe that the algorithm a( .  ) is continuous, 

- -  
except, perhaps, at the optimal point (i. e. r (G)  = v(G) and P(v ( s ) ,  s) 

separates S2 f rom r ( X ( 6 ) )  n r (K) .  That this is indeed so is proven in [ 9 1. 

(28) Theorem: Let so, sl, s2, . . :, be a sequence in T generated according to 

the law 

s = a(si), i = 0,1, 2,. . . 
i t1 

.b a. * -,- 
Then s. converges to  a point s*'* E T such that v(s ) = w(s ). 

Proof: 

1 - 
*, 

(We shall only prove this theorem for the case  when a(. ) is 

continuous on its entire domain of definition). First, we observe that 

for every S E T  such that v(s) f w(s), we - must have c(a(s))  > c(s).  Next, 

we observe that for any s, s' in T, with s' f s ,  w(s') f w(s), i. e. w(* ) 

is one-to-one on T. n 

Since c(s ) > c(si), i = 0,1, 2 , .  . . , is a monotonic increasing 
i t1 

sequence which is bounded f rom above, we must have, 

.I. -I- 

C(Si)' C < C) if (0,1, 2, * . . 1. 

-12- 



I .  

. Since T is closgd and bounded, the sequence { s . }  1 must contain 

a convergent subsequence, {si}, i K, an index s e t  contained i n  
Jr 

{ O , l ,  2, . . . }, with limit point ser E T ,  say. Hence, since c( 0 ) and a( .) 

But this implies that 

J. J. 

V(S*’.) = w(s-’-) 
* -  ‘ 

* Now, since w ( ) is one-to-one on T, and since the intersection 

consists of exactly one point wer (by uniqueness of solution), it follows 

e ( c ( s * ” ) )  n 
.l. 

.L 

that the l imit  point sl’ is the only point t o  which a subsequence of is.} 
1 

can converge and hence { s . }  itself converges to this point. 
1 

Corollary: Let X E (0 , l )  and le t  a - T + T  be defined by ( 32) x‘ 

(33) 

where a(. ) is defined by (27). 

according to the law 

Then any sequence { s . }  1 in T generated 

(33) s = a ( s )  it1 X i 
.*. 4. .Ir 

converges to apoint s”. E T such that v(sIr) = w(s-’). 

’ -13- 



(35) 

‘; 

Proof: We s imply  note that a ( .) is continuous and that c(a  ( s ) )  > c(s) x x 
for all s E  T such that v(s) f w(s). Hence the proof is exactly as for 

theorem (28). 

Remark: We conclude f rom the above corollary (since X > 0 may be 

taken to  be quite small without affecting convergence) that even a very 

approximate evaluation of a(s) should be compatible with convergence. 

We shall now give the algorithm for carrying out the computation 

A - A %  . . . ,6 ) for the minimum of the optimal control sequence u = (u1,u2, 

energy problem. 

N 

111. THE ALGORITHM , 
E 

P1. Initial Guess Procedure : 

d-c Set s - , where c is the center of h2 = ( X I  Ilx-c I ISp}  0 - ‘R 
-N and d = A  c as before. 

0’ Clearly, s is in T. ~ 

0 -  

P2. Computation of v(s 0 ), w(s 0 ), c ( s  0 ), r ( s  0 ) 

Step 1: By (21), 

4 

0 v(s ) = c t ps 0 

Step 2: Note that w(s ) is the point onP(v(s  ), s ), which is the terminal 0 0 0  

state- for  the minimum energy problem when 52 is 

Hence, f rom necessary and sufficient conditions, 

(11)) that 

w ( s ) = d +  s a t < p s  r . > r  0 0 0 ’ 1  i 
i =1 

-14- 

se t  equal to P( v(s ), s ). 

we obtain (as  in ( lo) ,  
0 0  



for  some p < 0. To compute p, substitute (36) 

for P(v(s  ), s ), and set p to  satisfy (see (20)), 

0 

0 0  ' 0  

N 
( d  - c - p s o  t 1 sat { pso, ri) ri, s o  ) - - (37)  

i =1 

into the expression 

0 

This computation is quite easy since (37)  is a piecewise l inear expression. 

Step 3: By inspection of ( 3 6 )  and (23), 

Step 4: B y  definition of u(s ) (26), 0 * 

1 P3. Computation of s 

- 
in ( ~ ( s  ), by setting 

yM' 0 Step 1: 

, . . . in (39) ,  (assuming of course, that for X = 1, x = o ,  - - 
Compute M t 1 points y , y , . . . , 
1 1 
M ' 2M 

1 2  

the point is in ~ ( s  )). 

Step 2: 

a j E {1,2,. . , M} such that 

0 

Compute c(y.) for  i = 1, 2,. . . , M%y setting s = y. in P2. Find 
1 0 1  

c(y.) L c(y.) for  all iE (1, 2,. . . , M}. J 1 (40) 

Step 3: Set 

= Y .  
J 

-1 5- 



. i  

Note that it is usually best  to start with M = 2 and to increase M only 

if (40) cannot be satisfied. 

P4. Verification of Feasibility. 

Suppose that for some s o €  T, we find that the se t  C(fi) = r ( K )  does 

not intersect the plane P(v(s  ), s ), then it is clear  that there  is no 0 0  

admissible control sequence which will take the system f rom x = c 
0 0 

to 

Sa in N steps, i. e. the problem has no solution. 

Step 4: Compute a p*< 0 such that 

If 

(43) 
*Y 

N 

0 4  
i =1 

J. 

( d-e-ps +F sgn ( p?’ so, ri ) ri, so } > 0 

then there  is no solution to the minimum energy problem. 

0 
P5. Verification of Optimality of s - 

. Step 1: Minimize with respect to p the function 

N 

If min g(p, so) = 0 then s is optimal. 
0 P 

(451 

P6. Computation of the Optimal Control Sequence. 

Suppose s satisfies either v(s ) = w(s ) o r  min g(p,s ) = 0. 
0 P 0 0 0 

Then s is optimal and 
0 

A 

u . = s a t (  p s r ) f o r i = 1 , 2  ,..., N 
1 0 0’ i 

-1 6- 



where p is determined either by ( 3 6 )  or  by g(p s ) = 0. 0 0' 0 

The manner in which these six procedures are combined into 

an algorithm is best  illustrated by the following flow chart. 

when dER,  u = (0, 0 , .  . . , 0) and hence the problem becomes trivial. Also 

note that the use of P 5  can be omitted since the chances of guessing right 

Note that 

' A  

the very first t ime a r e  very slim indeed. However, if s were the 0 

optimal solution, the algorithm would not recognize it i f  P5  were omitted. 

It would yield an s # s 1 0  and would then proceed to  construct a sequence 

which would converge to s The use of a truncation e r r o r  
0' s2, s3, 

E ;  > 0 is introduced to stop computations after a finite number of steps 
+ 

when I]v(s,) - w(so)ll  5 E. 

IV. CONCLUSION 

The algorithm presented in section I11 is the least  obvious and - - ..-- 
least  direct  one of the three methods presented. 

tional behaviour is considerably better than that of the other two. 

reference point of comparison, the author would like to indicate that 

on a number of specific runs on a problem with N = 50 and n = 10 (a tenth 

However, i ts  computa- 

A s  a 
--_____----- 

J 

order  system with eigenvalues of A ranging from 0.9 to 0. 5 ) ,  the parametric 

method took three iterations and 3 - 5 sec. of IBM 7094 time to obtain a 

solution, while the gradient method of section I required 40 - 60 sec.  to 
r------ 

t 

compute. 

The reason for the good behavior of the parametric method is 

obvious: i t  requires no matrix inversions, and the substitute step, the 
3 

-17 - 



.-. 
i ,  

solution of (37) ,  which it introcaces is easy to  c a r r y  ou-. 

With nonlinear programming becoming more and more relevant 

to control problems, it is hoped that the present work will facilitate 

the task of modifying and adapting standard algorithms to the specific 

structure of optimal control problems. 

a 
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